Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens.
نویسندگان
چکیده
Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies.
منابع مشابه
Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids.
The three-dimensional structure of a human alphabeta T cell receptor (TCR), B7, bound to the HLA-A2 molecule/HTLV-1 Tax peptide complex was determined by x-ray crystallography. Although different from the A6 TCR, previously studied, in 16 of the 17 residues that contact HLA-A2/Tax, the B7 TCR binds in a similar diagonal manner, only slightly tipped and rotated, relative to the A6 TCR. The struc...
متن کاملCAR T-cell Therapy of Hematologic Malignancies: An Update in Targeted Antigens
Immunotherapy with genetically engineered T-cells that express the chimeric antigen receptor (CAR) has raised hopes for the treatment of pediatric malignancies. Although CAR T-cell development is on a fast-moving pace and evolution, the context of exploring novel targetable antigens has been neglected. In this review study, we analyze the prominent hematologic antigens targeted by engineered T-...
متن کاملThe Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line
Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...
متن کاملStructure and function of a membrane-bound murine MHC class I molecule.
MHC molecules are expressed at the surface of nucleated cells to present peptides to T cells. Structural information on MHC molecules has been gathered by x-ray crystallography techniques by using soluble proteins. Although relationships between MHC molecules and cell membranes have not been studied in detail, they are of critical importance for T cell recognition. Using a chemically modified l...
متن کاملThe X-ray Transform and its Application in Nano Crystallography
In this article a review on the definition of the X- ray transform and some ofits applications in Nano crystallography is presented. We shall show that the X- raytransform is a special case of the Radon transform on homogeneous spaces when thetopological group E(n)- the Euclidean group - acts on ℝ2 transitively. First someproperties of the Radon transform are investigated then the relationship ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 120 شماره
صفحات -
تاریخ انتشار 2017